- invariant complement
- мат.инвариантное дополнение
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Invariant de nœuds — Les deux nœuds sont les mêmes, leur invariant est donc identique. En théorie des nœuds, un invariant de nœuds est une quantité définie pour chaque nœud qui est la même pour tous les nœuds équivalents. On parlera d équivalence lorsqu on peut… … Wikipédia en Français
Colin de Verdière graph invariant — Colin de Verdière s invariant is a graph parameter μ(G) for any graph G introduced by Yves Colin de Verdière in 1990. It was motivated by the study of the maximum multiplicity of the second eigenvalue of certain Schrödinger operators.[1] Contents … Wikipedia
Knot invariant — In the mathematical field of knot theory, a knot invariant is a quantity (in a broad sense) defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some… … Wikipedia
Knot complement — In mathematics, the knot complement of a tame knot K is the set theoretic complement of the interior of the embedding of a solid torus into the 3 sphere. This solid torus is a thickened neighborhood of K . Note that the knot complement is a… … Wikipedia
Representation theory — This article is about the theory of representations of algebraic structures by linear transformations and matrices. For the more general notion of representations throughout mathematics, see representation (mathematics). Representation theory is… … Wikipedia
Symmetric space — In differential geometry, representation theory and harmonic analysis, a symmetric space is a smooth manifold whose group of symmetries contains an inversion symmetry about every point. There are two ways to make this precise. In Riemannian… … Wikipedia
Semisimple — This article is about mathematical use. For the philosophical reduction thinking, see Reduction (philosophy). In mathematics, the term semisimple (sometimes completely reducible) is used in a number of related ways, within different subjects. The … Wikipedia
Semisimple Lie algebra — In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras, i.e., non abelian Lie algebras mathfrak g whose only ideals are {0} and mathfrak g itself. It is called reductive if it is the sum of a semisimple and an… … Wikipedia
semisimple — adjective a) In which each submodule is a direct summand. b) For which every invariant subspace has an invariant complement, equivalent to the minimal polynomial being squarefree … Wiktionary
Klein geometry — In mathematics, a Klein geometry is a type of geometry motivated by Felix Klein in his influential Erlangen program. More specifically, it is a homogeneous space X together with a transitive action on X by a Lie group G , which acts as the… … Wikipedia
Factor H — Complement factor H PDB rendering based on 1haq … Wikipedia